
ADDITIONAL CASE STUDIES

This section presents extra case studies, which are evaluated
using hardware-in-the-loop simulation, to demonstrate how
TimeTrap can cause temporal displacements and how they
instigate control deviation.

Case Study IV on Autoware.Auto. Autoware.Auto [66] is
an open-source autonomous driving project, which is widely
used for research and development. It contains the full-stack
software packages required for self-driving cars, including
detection, localization, planning, control, etc, and supports
different application scenarios. Our experiments were con-
ducted on Autoware.Auto 1.0.0 version. We run the entire
software system on AMD Ryzen 7 1700X with 32 GB RAM
in compliance with the official recommended platform (8
cores and 32GB). The simulated vehicle model is Lexus 2016
RX Hybrid and the scenario used is the officially released
Autonomous Valet Parking [53]. For simulation, we run LG-
SVL [84] on another PC with a GPU of Geforce RTX 2070S.
The communication between the platform being tested and the
simulator is via Ethernet.

Attack Result. Figure 11 (b) shows the traveled path of the
vehicle under test (VUT) on the map. TimeTrap was launched
at the point marked by a star and it was periodically contending
for shared resources to cause temporal displacements. On the
remaining traveled path, as shown in Figure 11 (d), there exist
two segments that incurred obvious temporal displacements by
TimeTrap tinted in red. From the first segment, the VUT was
driving straight with no obvious control deviation. However,
as shown in the second segment, the VUT completely lost
control and hit the adjacent building.

Cause Analysis. The reason behind this is the malfunction of
the localization module, causing the vehicle to falsely estimate
its position. In Autoware.Auto, localization uses the Normal
Distributions Transform [85] (NDT) matching algorithm to
estimate the pose of the vehicle. Since the optimization
problem in NDT is modeled as a maximum a posteriori (MAP)
problem in the software, an initial guess value is required to
accelerate the solver. We use two code snippets in Figure 11(a)
to demonstrate the vulnerability. As shown in Figure 11(a),
the estimation of pose (defined as pose_out) relies on
the initial value, which is defined as initial_guess. As
to initial_guess, its value is inferred upon looking up
(line 65) or extrapolating (line 71) the transformation tree
in the system (in Code 11(a)). This inference is based on
the assumption that the transformation graph tf_graph is
in sync with target_frame. As the inference is time-
related, a delay on the update of tf_graph cause result in a
temporal displacement on target_frame, producing erro-
neous results in the critical variable initial_guess. Fur-
thermore, the incorrect initial_guess causes the solver
register_measurement() to fall into a local minimum,
resulting in erroneous localization result pose_out.

By comparing the errors of pose_out in two segments
that have large temporal displacements, in Figure11(d), it can

be observed that although initial_guess had errors to the
same extent in these two periods, the control was less affected
in the first segment. This is because the VUT was driving
straight during the first period and more common features
persist in two adjacent frames of the point cloud, allowing the
NDT to still converge albeit incorrectly initial_guess.
In Figure 11(c), it can be observed that the localization result
never deviated from the reference path in the first segment.
On the contrary, the localization results are erroneous in the
second segment, where the results were jumping arbitrarily.
This indicates that the attack outcome depends on the physical
state of the victim. If the vehicle was in a non-vulnerable state,
attackers need more CPU budget or higher priority to cause
substantial impacts on control performance.
Different Simulation Worlds. We also conducted experiments
on different scenarios and the experimental results are reported
in Table IV.

TABLE IV: TimeTrap Attack on Different Scenarios

Map Scene
Charac.

Sensing
Overhead (%)

Temporal
Disp. (s)

Control
Dev. (m)

Success-
rate(%)

Parking
Lot

S 0.17% 2.0 3.6 72%

D 0.21% 2.3 3.9 56%

Borregas
Ave.

S 0.18% 2.2 1.8 77%

D 0.36% 2.3 1.7 61%

GoMent. S 0.17% 2.3 2.4 65%

D 0.25% 1.9 2.2 52%

San
Fran.

S 0.19% 2.7 4.8 74%

D 0.34% 2.3 5.4 58%

Shalun S 0.17% 2.4 2.1 64%

D 0.23% 2.9 2.6 51%

S: Static Scenario; D: Dynamic Scenario.
From the results, we can observe that the sensing had larger

errors in dynamic scenarios. This is because the randomly
generated traffic participants can cause uncertain events such
as slowdowns or stops. Those events make the sensing more
challenging for TimeTrap. Moreover, to handle the unexpected
events, our adversarial task took more time to filter the distur-
bance. Overall, the sensing part of TimeTrap achieved effective
performance. The maximum overhead in the experiments is
0.36% CPU usage. As to the control deviation, the VUT
running on Borregas Avenue was the less affected because
its map of Borregas Avenue is relatively simpler. Even for the
least control deviation 1.7<, TimeTrap was still able to lead
the vehicle to hit the curb.
Case Study V on Humanoid ROBOTIS OP3. ROBOTIS
OP3 [64] is a miniature humanoid robot, which consists of
20 movable joints each equipped with a sensor module and
a control module. The sensor module perceives the states
of the robot (such as the velocity at any joint). The control
module is designed based on a PID controller to generate the
torque at each joint. Under the cooperation of the two modules,
ROBOTIS OP3 can finish some complicated interactive tasks
such as shaking hands, squatting down, standing up walking,

Attack launch point
Attack launch point

 345: geometry_msgs::msg::TransformStamped initial_guess = m_pose_initializer.guess(
 346: m_tf_buffer, observation_time, map_frame, observation_frame);
 347: RegistrationSummary summary{};
 348: const auto pose_out =
 349: m_localizer_ptr->register_measurement(*msg_ptr, initial_guess,
*m_map_ptr, &summary);

/* In function guess()*/
63: try {
64: // attempt to get transform at a given point.
65: return tf_graph.lookupTransform(target_frame, source_frame, time_point);
70: } catch (const tf2::ExtrapolationException &) {
71: return this->impl().extrapolate(tf_graph, time_point, target_frame,
source_frame);
72: }

(a)

(b) (c) (d)

Crash

Two sequences with large
temporal displacement

Lost localization due to T.D

Attack launch point

Starting point

Fig. 11: Case study of Autoware.Auto. (a) Code snippets where temporal displacements happened. (b) Overall map and traveled
path. (c) Zoomed traveled path and sequences with high temporal displacements that are in purple. (d) The values of two critical
variables, initial_guess and pose_out, and their relations with temporal displacements.

(a) Parking Lot (b) Borregas Avenue (c) GoMentum Station (d) San Francisco (e) Shalun

Fig. 12: Digital twins for testing Autoware.Auto in hardware-in-the-loop simulation environments. All those environments are
simulated via modeling the real-world.

etc. We deploy the software stack of OP3 in Nvidia Jetson
Nano. The simulation of OP3 is running on another PC in
Gazebo. We generate a series of different tasks in advance
and send them to OP3 one by one. OP3 receives the task and
executes the action demanded. If it is already in the process
of executing a task, any request will be ignored. During the
testing, TimeTrap was randomly launched at different tasks.

Attack Result. In most cases, our attack cannot affect the
stability of OP3. However, for some specific actions, such
as walking, TimeTrap can effectively corrupt it, making the
robot fall. Figure 13(a) shows the movement of joints in OP3.
We observe that the movements of joints are highly similar
and periodic with a specific time interval. However, some
joints start to produce abnormal movements once TimeTrap is
launched. This minor error breaches the coordination between
joints, causing the robot to fall down. Once the CPU budget is
beyond 5%, adversary can cause an attack outcome as shown
in Figure 13.

Cause Analysis. At the control module of each joint in OP3,
there are two concatenated controllers. The first one is the
action controller that computes the target position a joint
should reach in each control loop. The second one is the
effort controller that receives the target position from the
action controller and then computes the effort the servo should
perform to reach the target position. Besides the input from
the action controller, the effort controllers also take the sensor
input of the Inertial Measurement Units (IMUs) in each joint
to estimate the current position. Since they take inputs from
two different sources: higher-level controllers and inertial
sensors, the temporal displacement may happen within the
effort controllers. From Figure 13(d), we can observe that
the temporal displacement was relatively stable (around 0
ms) when it is not under attack. In this case, different joints
coordinate well and move steadily. However, once the attack
is launched, the temporal displacement could increase to 30ms
to a point that the command calculated by the effort controller
starts to oscillate (The interval marked by the dotted line in

Attack launch point

(a) Motion movement of ankle controller. (b) Control command from pitch controller.

(c) Joint position of right ankle. (c) Temporal displacement!

Faulty
joint

Fig. 13: Case study on right ankle pitch controller of OP3.
The period under attacking is fenced using dotted lines.

Figure 13(d)). As a result, the position of the right ankle
joint turns out to be abnormal, which breaks the coordination
between different joints such that the robot fell down.
Case Study VI on Jackal UGV. Jackal UGV [65] is an
unmanned guided vehicle that can operate in both indoor
and outdoor environments. We set up the simulation world
in Gazebo and run the software stack on Intel i3-8100.
Simulated hardware includes the four-wheel vehicle itself and
a SICK LMS111 laser. The software stack is composed of
a localization module (google Cartographer [40], [86]) and
a control module is implemented based on the pure pursuit
algorithm [87]. We pre-defined several long mission paths in
an office environment (shown in Figure 14). The Jackal UGV
navigates to track the reference path.

Attack launch point

Starting point

Jackal UGV crashes
to the table

Fig. 14: Case study on Jackal UGV.

Attack Result and Cause Analysis. From Figure 14, we can
observe that Jackal UGV failed to track the path and hits
the table once TimeTrap is launched. In this case study,
the crash was caused by erroneous location results. In Jack
UGV’s localization module, Cartographer, there is a sporadic
task running in the background, responsible for optimizing
accumulated drifts during the navigation. The optimization
is supposed to release in every ten laser scans processed

by the system. Since the optimization aims to mitigate the
accumulated drifts, its finish will lead to a shift of localization
value. The direct consequence is the vehicle’s position will
shift for a short distance. Such shift is negligible and within
the tolerance of the controller if Cartographer can keep the
task running within the implicitly (no deadline specified for
this task) expected frequency. However, TimeTrap breaks the
implicit deadline by constantly delaying the optimization task.
Consequently, the task cannot finish in time and its workload
keeps accumulating which increases the execution time in turn.
After that, the vehicle’s position shifts more significantly such
that the controller can no longer keep tracking the reference
path, leading to the crash on the table.

	Introduction
	Systematization of Real-World Issues and Temporal Displacement
	Dissecting the Timing Issues – Temporal Displacement
	Temporal Displacement in Real-world Applications

	System Model
	TimeTrap Design
	Discovering Exploitable Conditions
	Resource-Oriented Execution Profiling
	Generation of Aggressor Workloads

	TimeTrap Implementation
	Evaluation
	Case Studies
	Effectiveness of TimeTrap
	Generalization of TimeTrap

	Limitations and Discussion
	Related Work
	Conclusion
	References

